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Precise characterization of chromatin states is an important but difficult task for understanding the regulato-
ry role of chromatin. A number of computational methods have been developed with varying levels of
success. However, a remaining challenge is to model epigenomic patterns over multi-scales, as each histone
mark is distributed with its own characteristic length scale. We developed a tiered hidden Markov model and
applied it to analyze a ChIP-seq dataset in human embryonic stem cells, We identified a two-tier structure

K ds: Al R B < : B
H?:I:;; Markoy model containing 15 distinct bin-level chromatin states grouped into three domain-level states. Whereas the
Chiromati bin-level states capture the local variation of histone marks, the domain-level states detect large-scale

variations. Compared to bin-level states, the domain-level states are more robust and coherent. We also
found active regions in intergenic regions that upon closer examination were expressed non-coding RNAs
and pseudogenes. These results provide insights into an additional layer of complexity in chromatin

Computational biology

organization.

1. Introduction

In a multi-cellular organism, virtually all the cells share the same
genome, but each cell-type has a distinct gene expression pattern.
Chromatin provides an important layer of cell-type specific transcrip-
tional control [1,2]. The basic unit of chromatin is the nucleosome,
which wraps a 147 bp sequence of the genome. The nucleosome
contains two copies each of four core histone proteins; H2A, H2B, H3
and H4 [3]. Each histone has an N-terminal tail that can be covalently
modified at multiple positions. Distinct combinatorial patterns (also
known as chromatin states) play important roles in transcriptional
regulation |1,2]. As genome-wide histone modification data are being
generated in a rapid speed [4-13], there has been a growing interest
in developing computational methods to precisely define chromatin
states | 10,14-18]. Previous methods have mainly focused on detecting
local chromatin state variation, whereas large-scale patterns (also
known as domains) remain poorly characterized. Nevertheless, epige-
netic domains have been identified in various data-types [19-25]. To
systematically identify domain patterns from multiple histone marks,
we recently developed a hidden Markov model, treating each gene as
a separate unit [26]. By applying this method to analyze a collection
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of ChIP-seq datasets in 27 human cell lines, we found that chromatin
states can be used to classify cell-types with high accuracy [27].
Rather than focusing on each length scale separately, it is desirable
to characterize multi-scale chromatin states in a single computational
framework. To this end, we present a new approach called tiered
hidden Markov model (THMM). We tested this approach by analyzing
a publicly available ChIP-seq dataset from the Roadmap Epigenome
Project [8]. Our analysis identified a two-tiered structure of chromatin
states, which we call the bin- and domain-level states. Whereas
bin-level states can effectively capture local (200 bp) variation of his-
tone modification patterns, the domain-level state detects large-scale
(=1 Kb) variations. We show that this two-tier characterization is
useful for better understanding of the regulatory role of chromatin.

2. Results
2.1. Dataset collection and pre-processing

ChiP-seq data from the H1 human embryonic stem (ES) cell line
was obtained from the Roadmap Epigenome Project [8] (http://www.
epigenomebrowser.org/). Five modifications (H3K4mel, H3K4me3,
H3K9me3, H3K27me3 and H3K36me3) with well-known biological
functions were chosen for analysis. Raw sequence reads were mapped
to non-overlapping 200 bp bins via BEDTools [28] and normalized to
have the unit of reads per million reads (RPM). Bins that overlapped
50% or more with known repetitive regions [29] were removed due
to possible alignment issues. After removing these highly repetitive
regions, the remaining 99.97% bins were analyzed further.
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For simplicity, we focused on chromatin state organization around
genic regions, and truncated the genome by keeping only the promot-
er and transcribed regions of protein-coding genes according to
Refseq [30]. To be precise, in this study we use the term ‘promoter’
to include the region 2 Kb upstream from the transcription start
site, whereas the ‘gene body’ is defined as the region from transcrip-
tion start site to transcription end site. We thus excluded most
intergenic regions, which consist of the majority of the genome,
from our initial analysis. This truncated genome contains a total of
6,332,441 bins (1.27 Gb).

2.2, Tiered chromatin states in human ES cells

We applied our THMM approach to characterize the chromatin
states on the truncated genome in human ES cells based on the five
histone modification marks mentioned above. Because of its smaller
size, we first determined the optimal number of bin-level states by
using the data on chromosome 22. Since the log-likelihood of the
model increases monotonically with model complexity, we used
permuted data as a control, and evaluated the difference of log-
likelihood for observed and permuted data, which was generated by
randomly reordering all bin locations on chromosome 22 without
changing the corresponding sequence reads. This strategy is similar
to the gap-statistic commonly used for K-means clustering [31]. We
varied the number of bin-level states from three to twenty eight,
and found that the log-likelihood differences between the observed
and permuted data plateaus around K = 15 (Supplemental Fig. 1),
suggesting that the optimal number of bin-level states is around 15.
As an additional validation, we found that 94% of truncated genome
falls into one of the 15 most abundant combinatorial patterns
(Supplemental Fig. 2). We compared three non-degenerative tiered
structures that are consistent with this constraint, corresponding to
a “3 x 5" model (that is, three domains with five bin-level states
per domain), a "4 x 4" model, and a “5 x 3 " model, respectively.
The “3 = 5" model has the best performance but quite similar to the
“5 x 3 " model (Supplemental Fig. 3). For simplicity and interpret-
ability, we selected the “3 x 5" model as the final model. We then re-
fined the parameter value estimate by fitting the entire truncated
genome (Table 1) and used it for the rest of the analysis in this
paper (see Materials and methods for details).

We found certain similarities among the bin-level states associated
with a common domain-level state; most bin-level states within a do-
main share similar histone modification patterns. The bin-level states
associated with Domain 1 (States 1-5) are generally associated with
high levels of H3K27me3; Domain 2 (States 6-10) is generally absent
of all histone marks; while Domain 3 (States 11-15) is enriched with
H3K4me3 and H3K36me3 and depleted of H3K27me3 (Table 1 and
Fig. 2). Following our previous work [26,27], we annotated Domains
1-3 as non-active, null, and active, respectively.

Next we examined the overall distribution of the domain-level
states. The majority (95.6%) of the truncated genome is assigned to
the null domain (Fig. 3, Supplemental Fig. 4), which is also the largest
on average, with a mean length of 53.9 bins (10.8 Kb, but the domain
size is highly variable with a standard deviation (SD) of 79.3 bins

Null Domain

Active Domain

Non-active Domain

Fig. 1. The topology of our THMM. Each bin-level state is represented by a circled
color-coded according to its corresponding domain-level state (represented by a box).
Note that transitions between different domain-level states can only oocur via a special
bin-level state from each domain. States within the null domain are represented by the
color light gray; states within the active domain are shown in medium gray; and states
within the non-active domain are in dark gray.

(15.9 Kb). In comparison, the active (average length + SD: 5.4 +
8.3 Kb) and non-active (average length + SD: 2.3 4+ 2.6 Kb) do-
mains are smaller on average, and also have less absolute variability
(though the relative variability is comparable). The null domains are
primarily associated with introns, whereas the non-active domains
are enriched in the promoter regions (Fig. 4).

While chromatin states are defined based on histone modification
data alone, they are useful only if the resulting annotations are also
functionally meaningful. It is well known that chromatin plays an
important role in gene regulation, and previous studies have shown
that active and inactive genes are associated with different sets of
histone marks [5]. For example, while H3K36me3 is enriched in highly
transcribed genes, the H3K27me3 mark is associated with transcription-
ally inactive genes. To test whether our unsupervised chromatin state
annotation methods can recapitulate such differences, we analyzed an
ES RNA-seq dataset [32], focusing on domain-level states. Raw sequence
reads were processed as for the ChIP-seq data and scaled to reads per
million reads (RPM). The active domain (States 11-15) is indeed
enriched with significantly higher expression levels (average RNA-seq
level + SD: 1.1E4 + 83E4 RPM) compared to other domains (two sam-
ple t-test versus null and non-active domain p-values < 0.0001)
(Fig. 5A), followed by the non-active domains (average RNA-seq
level 4+ SD: 9.8E2 4+ 1.7E4 RPM), and the null states have the lowest
transcription level (average RNA-seq level 4+ SD: 3.9E3 +7.8E3 RPM).
These transcription associated changes are consistent with a role of
H3K27me3 in gene silencing [33]. Taken together, these results have pro-
vided a functional validation of our method.

Table 1

Mean-level ChiPseq counts (RPM) for each chromatin state in the final THMM.
Domain-level Non-active Null Active
Bin-level 1 2 3 ! 5 6 7 8 9 10 11 12 13 14 15
H3K4mel 883 137.1 1319 103.4 71.0 24.8 40 26 3.7 6.6 539 43 273 2447 102.3
H3K4me3 231 194.4 1921.4 35.7 71384 16.9 15.0 14.8 154 15.2 221 153 16797.0 5273.4 2017.1
H3K9me3 92 1484 75 55 5.4 53 5.0 28 13.2 4.6 717 6.0 6.1 398.0 6.3
H3K27me3 519 9151.6 10443 76 36.1 6.4 47 44 6.0 97 77 48 7.0 173.1 7.6
H3K36me3 6.2 445 44 7.6 24 92 238 33 6.0 7Ar ) 80.2 1388 46 6141 15.2
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Fig. 2. The combinatorial histone modification patterns associated with different chro-
matin states. The sequence counts are normalized by converting to Z-scores defined as
follows: Zy, = (X i) /' where Xj; is the average count for histone modification
i=1,2 3,4, and 5 within state k = 1, 2,...15, | is the average modification level in
the truncated genome, and | is the standard deviation of histone modification i in
the truncated genome.

In addition, we applied the DAVID software to identify enriched
functional categories that are associated with each domain type
|34]. To avoid overlapping annotations, a gene striding multiple
domain-level state was assigned to the most enriched one along
that gene. As a result, we obtained 9484 non-active, 11,703 null and
2130 active genes for ES cells. The active genes are enriched with
cell maintenance related functions such as the zinc finger region,
ribosome, RNA binding, and cell cycle (Fig. 5B), which are all known
to be active in ES cells. Genes characterized by the null domains are
involved in the functions related to fully differentiated tissues such
as olfactory receptor, defense response, taste and vision. In contrast,
the non-active genes are related to development and cell growth
such as the regulation of transcription, homeobox gene clusters, mito-
chondrion and, the negative regulation of cell death.

2.3. Bin-level state differences within each domain

While the bin-level states within each domain share similar prop-
erties, there still exist critical differences between them. For example,

Non-Active: 3.3%

Null: 95.6% Active: 1.2%

Fig. 3. Proportion of the truncated genome in each domain. Domain colors are the same
as in Fig. 1.

while all five bin-level states within the active domain are enriched in
active genes, two (States 13 and 15) are more enriched in promoter
regions (Fig. 4B). State 13 is especially enriched with H3K4me3 and
tends to colocalize with transcription start sites. In contrast, the
other three states (States 11, 12, 14) are mainly located inside
gene-bodies (Fig. 4B). State 14 is especially enriched with the
H3K36me3 mark (Fig. 2] and, as expected, corresponds to the most
actively transcribed regions (Fig. 5A). These bin-level differences
strongly suggest the utility of our two-tiered approach in detecting
complex chromatin patterns associated with a common functional
element.

Similarly, the bin-level states within the non-active domain are
also different, with States 1, 3 and 5 more strongly enriched in pro-
moter regions than the other two states (Fig. 4B). Interestingly,
State 3 has the signature of bivalent domains |35], enriched with
both H3K4me3 and H3K27me3 marks. State 2 is highly enriched
with H3K27me3 but devoid of H3K4me3 (Fig. 2), corresponding to
strong repression (Fig. 5A). The null states are similar in general
and are associated with low transcriptional activity, although State
7 is more enriched with H3K36me3 and transcribed at a higher level.

2.4. Robustness of domain-level states

Noise in experimental data leads to uncertainty of chromatin state
annotations. Since the sensitivity of chromatin states on measurement
error should decrease with respect to length scale, we expect that the
domain-level states are more robust than the bin-level states. To test
this hypothesis, we fit a THMM model independently on each of twa rep-
licates and quantified the accordance with Cohen's [36] (see Materials
and methods for details). Indeed, we found that the domain-level states
( = 081, p-value < 0.0001; Supplemental Table 2) are more robust
than the bin-level states ( = 047, p-value < 0.0001; Fig. 6A). Com-
pared to a single-scale approach, our THMM has provided the flexibility
to prioritize either spatial-resolution or robustness, depending on the
specific biological questions at hand.

Though each of our domains has an average length larger than
2 Kb, we wanted to compare the spatial coherency of the bin-level
states to those of the domain-level states. To this end, we quantified

from comparing the chromatin state of each bin with another one
that is n bins away in the genome. We found that the domain-level
states are more coherent than the bin-level states (Fig. 6B).
Even at a distance of 2 Kb, the domain-level states still retaina of
0.58, compared to 0.33 for bin-level states (and zero expected by
chance).

2.5. Chromatin states in intergenic regions

We extended our investigation by applying the THMM to predict
genome-wide chromatin states, including all the intergenic regions.
In total, our amalysis covered 15,863,683 bins (corresponding to
3.17 Gb) (Supplemental Table 3). As expected, the vast majority
(98.8%) of intergenic bins were assigned to one of the null domain
associated states (Fig. 7, Supplemental Fig. 5). The intergenic null do-
mains (mean length & SD = 26.4 £ 486.1 Kb) are typically larger
(two-sample t-statistic p-value < 0.0001) than those in the truncated
genome (mean length + SD = 10.8 £+ 15.9 Kb).

Previous studies have identified large domains that are associated
with lamina proteins [19]. These lamina-associated domains (LADs)
are generally associated gene silencing. Interestingly, we found that
the vast majority of LAD-associated bins are assigned to the null
domain (Supplemental Fig. 6), suggesting that the histone defined
chromatin states are closely associated with the higher-order chroma-
tin structure.

Of note, there are 34,024 intergenic bins that fall into the active
domains. These domains are much shorter on average than in the
truncated genome (mean size = 2.8 Kb and 5.4 Kb, respectively).
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Fig. 4. The proportion of each (A) domain-level and (B) bin-level state found in promoter (light gray), intron (dark gray) and exon (black) regions.

We selected the RNA sequence reads that are mapped to intergenic re-
gions, and then compared those mapped to the active domains with
the intergenic background. We found that on average the expression
level at the active domains is 25 times higher (mean value =
1.6E3 RPM and 664 RPM, respectively) (Supplemental Fig. 7). For
reference, the expression level in active domains in the truncated ge-
nome is much higher (mean value = 1.1E4 RPM, two-sample t-test
p-value < 0.0001).

One important class of non-coding RNA is long intergenic non-
coding RNAs (lincRNAs), which have been increasingly recognized as
key regulators of diverse cellular processes [37-39]. We mapped the
above RNA-seq with known lincRNA annotations [40] to identify the
actively transcribed lincRNA in ES cells and found that they are highly
enriched in active domains ( * = 2.8E2, df = 2, p-value < 0.0001).
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Moreover, the expression levels of lincRNAs are relatively high (mean
value = 4.6E3 RPM) (Supplemental Fig. 8).

Another interesting class of features in intergenic regions is
pseudogenes, which has traditionally been thought as dysfunctional
fossils of coding genes [41]. However, recent studies have suggested
that a subset of pseudogenes still have functional roles, for example,
by regulating the expression level of its parental allele [42,43]. It re-
mains unclear whether there are distinct epigenetic signatures associ-
ated with different classes of pseudogenes. While the majority of the
pseudogenes (as annotated in http://pseudogene.org) are embedded
in the null domain, a larger portion (2.54%) than the truncated genome
(1.2%, two-sample test of proportions p-value < 0.0001) is mapped to
the active domains. We annotated each pseudogene as active, null, or
non-active, in the same way as for coding genes, and calculated the
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Fig. 5. Functional characterization of the chromatin states. (A) The average RNA-seq values for each bin-level state. Vertical lines represent the mean value for each domain. The
bottom track is the truncated genome-wide average. (B) Representative enriched functions and pathways identified using DAVID. p-Values for enrichment in the corresponding
DAVID category are determined by the Fisher exact test and adjusted for multiple testing by Benjamini-Hochberg procedure. Small p-values indicate evidence of an association
with the corresponding DAVID category. Colors of each state correspond to domain membership as in Fig. 1.
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enrichment score of each subtype relative to the whole population of
pseudogenes. Interestingly, we found that three immunoglobulin-
related subtypes are highly enriched with active domains (Supplemen-
tal Fig. 9, Supplemental Table 4). A functional role for immunoglobin
pseudogenes has been proposed for more than a decade. These
pseudogenes are highly conserved, have open reading frames, and re-
tain canonical structure sequence patterns [42|. Our results suggest
that active chromatin states may play a role in the maintenance of
their functional capacity. Taken together, the above results suggest
that the domain-level states may be useful for detecting functional el-
ements in intergenic regions.

3. Discussion

We have developed a THMM approach to systematically detect
chromatin states over multiple length scales. There are a number of ad-
vantages of this two-tiered approach compared to the regular HMM
approach used in previous studies: (1) the two-tiered chromatin states
can be naturally interpreted as large- and small-scale chromatin struc-
tures, respectively, facilitating future biological investigations of the

Non-Active. 0.83%
MNull: 98 8%
Active: 0.36%

Fig. 7. The distribution of domain assignment for the intergenic genome. 98.8% of the
truncated genome is assigned to the null domain, 0.83% to the non-active domain,
and 0.36% to the active domain. Domain colors are the same as in Fig. 1. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the weh
version of this article.)

chromatin structures or interactions; (2) compared to a coarse-
grained HMM model, the two-tiered approach preserves spatial resolu-
tion at the bin-level; and (3) the two-tiered approach is more robust
than using a single-tier. Similar to our previous work [26,27], we iden-
tified three domain-level chromatin states in ES cells, corresponding to
active, non-active, and null domains, respectively. Furthermore, this
new approach also allowed us to identify refined bin-level patterns
within each domain, thereby increasing the spatial resolution. As
such, our THMM approach has provided insights into an additional
layer of complexity in chromatin state organizations.

While our analysis was mainly focused on the truncated genome
containing only the protein-coding genes, we also found interesting
patterns in intergenic regions by applying the THMM to predict
whole-genome chromatin states. Specifically, we found that a large
number of bins are characterized by a chromatin state within active
domains. Closer examination suggests that a certain fraction of these
domains are associated with either noncoding RNAs or pseudogenes.
While similar results have been obtained by other methods in recent
literature [38,43], our two-tiered approach provided more refined de-
scription of the chromatin states. Our results suggest that chromatin
state information may serve as a useful guide for detecting functional
elements in intergenic regions.

4. Material and methods
4.1. THMM model

We have developed a THMM approach to model chromatin states
at multiple length scales. THMM is a special kind of hidden Markov
models (HMM) that contains a two-tiered hidden-state structure,
which is suitable for detecting both bin- and domain-level states.

We started by fitting a fully connected HMM with K hidden states.
Following previous work [18,44|, we modeled the emission probabili-
ties as multivariate normal emission distributions; that is, the probabil-
ity of observing the M-length vector Y; at the tth bin is:

PYjH k MVN . ,;

where H, is the hidden state, and , and  are the mean and covari-
ance of emission probability distribution for state k, respectively. We
recognize that the sequence reads data may be better modeled with a

dx.doi.org/10.1016/j.ygeno.2013.03.009
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Poisson or negative binomial distribution, but it is mathematically chal-
lenging to extend to multivariable setting and to incorporate into the
HMM framework.

Let Y, be a matrix of the observed Y;'s assigned to state k; the log
likelihood of the K means and covariances given the data is the sum
of the corresponding log-likelihoods for each of the K states:

1 i gscii i 17 giea Y

b

¥, Mn2 mn ., Y, ., 2

D]

The model parameters were estimated by using the Baum-Welch
algorithm [45]; the Viterbi algorithm [45] was used to obtain the
maximum-likelihood estimate of the chromatin state at each bin loca-
tion. In order to account for the trend of better fitting with more com-
plex models, we determined the number of hidden states, K, by the
log-likelihood difference between the observed and permutated
data, as motivated by the gap-statistic for K-means clustering [31].
Specifically, for each value of K chosen between three and twenty
eight, we computed the log-likelihood difference between the models
for fitting the observed and permuted data. The permuted data were
generated by permuting the bin locations across the truncated ge-
nome. While that the value of log-likelihood increases monotonically
with K, saturation occurs around K = 15. As a compromise between
model performance and complexity, we selected K = 15 or 16 in
our final model.

As discussed in the main text, one limitation of this initial model
is that it only models histone modification on a single length-scale
(i.e., 200 bp). To overcome this limitation, we divided the hidden states
into clusters with the properties that intra-cluster states are fully
connected, whereas inter-cluster transitions are confined to a specific
state selected from each cluster. For clarification, we call these clusters
the domain-level states, whereas the individual hidden states are re-
ferred to as the bin-level states. As shown in Fig. 1, the resulting
model is a special case of HMM whose topology is characterized by a
tiered structure, hence called the tiered hidden Markov model (HMM).

In order to infer the optimal THMM structure, we initialized the
emission probability of each bin-level state based on our fully
connected HMM. To determine how many bin-level states should be
included in each domain, we made the simplifying assumption that
the number of bin-level states in each domain is identical. Under
this assumption, there are only three non-trivial possibilities, corre-
sponding to three, four, or five domains, respectively. To determine
which configuration is the best, we fitted each model to the data
and evaluated the corresponding log-likelihood values. The configu-
ration corresponding to the highest log-likelihood value was selected
as the final model.

4.2. Quanti cation of agreement between different annotations

We used Cohen's -statistic [36] to quantify the agreement between
a pair of annotations along the genome, which may correspond to
either the chromatin states identified from our computational model
or functional annotations from curated databases. The -statistic is de-
fined as

P, P,

P,

e

.

where P, is the proportion of agreement between the two annotations,
and P, is the expected agreement due to chance as estimated by ran-
dom permutation. Typically (but not always), the value of is between
zero (no agreement) to one (perfect agreement). Values over 0.75 are
often considered excellent, whereas those below 040 are considered
poor. p-Values are not typically calculated as small values of can be

significantly different from zero [46]. To account for differences of the
prevalence of different annotations, was further normalized by divid-
ing by the maximum value ,,. We applied this approach to evaluate
the reproducibility of chromatin state assignment to compare with
known functional annotations.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.ygen0.2013.03.009.
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